A Comprehensive Analysis of Bilingual Lexicon Induction

نویسندگان

  • Ann Irvine
  • Chris Callison-Burch
چکیده

Bilingual lexicon induction is the task of inducing word translations from monolingual corpora in two languages. In this paper we present the most comprehensive analysis of bilingual lexicon induction to date. We present experiments on a wide range of languages and data sizes. We examine translation into English from 25 foreign languages: Albanian, Azeri, Bengali, Bosnian, Bulgarian, Cebuano, Gujarati, Hindi, Hungarian, Indonesian, Latvian, Nepali, Romanian, Serbian, Slovak, Somali, Spanish, Swedish, Tamil, Telugu, Turkish, Ukrainian, Uzbek, Vietnamese and Welsh. We analyze the behavior of bilingual lexicon induction on low frequency words, rather than testing solely on high frequency words, as previous research has done. Low frequency words are more relevant to statistical machine translation, where systems typically lack translations of rare words that fall outside of their training data. We systematically explore a wide range of features and phenomena that affect the quality of the translations discovered by bilingual lexicon induction. We give illustrative examples of the highest ranking translations for orthogonal signals of translation equivalence like contextual similarity and temporal similarity. We analyze the effects of frequency and burstiness, and the sizes of the seed bilingual dictionaries and the monolingual training corpora. Additionally, we introduce a novel discriminative approach to bilingual lexicon induction. Our discriminative model is capable of combining a wide variety of features, which individually provide only weak indications of translation equivalence. When feature weights are discriminatively set, these signals produce dramatically higher translation quality than previous approaches that combined signals in an unsupervised fashion (e.g. using minimum reciprocal rank). We also directly compare our model’s performance against a sophisticated generative approach, the matching canonical correlation analysis (MCCA) algorithm used by Haghighi et al. (2008). Our algorithm achieves an accuracy of 42% versus MCCA’s 15%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Role of Seed Lexicons in Learning Bilingual Word Embeddings

A shared bilingual word embedding space (SBWES) is an indispensable resource in a variety of cross-language NLP and IR tasks. A common approach to the SBWES induction is to learn a mapping function between monolingual semantic spaces, where the mapping critically relies on a seed word lexicon used in the learning process. In this work, we analyze the importance and properties of seed lexicons f...

متن کامل

Lexicon induction and part-of-speech tagging of non-resourced languages without any bilingual resources

We introduce a generic approach for transferring part-of-speech annotations from a resourced language to a non-resourced but etymologically close language. We first infer a bilingual lexicon between the two languages with methods based on character similarity, frequency similarity and context similarity. We then assign partof-speech tags to these bilingual lexicon entries and annotate the remai...

متن کامل

Bilingual Word Embeddings from Non-Parallel Document-Aligned Data Applied to Bilingual Lexicon Induction

We propose a simple yet effective approach to learning bilingual word embeddings (BWEs) from non-parallel document-aligned data (based on the omnipresent skip-gram model), and its application to bilingual lexicon induction (BLI). We demonstrate the utility of the induced BWEs in the BLI task by reporting on benchmarking BLI datasets for three language pairs: (1) We show that our BWE-based BLI m...

متن کامل

End-to-end statistical machine translation with zero or small parallel texts

We use bilingual lexicon induction techniques, which learn translations from monolingual texts in two languages, to build an end-to-end statistical machine translation (SMT) system without the use of any bilingual sentence-aligned parallel corpora. We present detailed analysis of the accuracy of bilingual lexicon induction, and show how a discriminative model can be used to combine various sign...

متن کامل

Visual Bilingual Lexicon Induction with Transferred ConvNet Features

This paper is concerned with the task of bilingual lexicon induction using imagebased features. By applying features from a convolutional neural network (CNN), we obtain state-of-the-art performance on a standard dataset, obtaining a 79% relative improvement over previous work which uses bags of visual words based on SIFT features. The CNN image-based approach is also compared with state-of-the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Linguistics

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2017